LAKES REGION COMMUNITY COLLEGE

379 Belmont Road Laconia, NH 03246 (603) 524-3207

COURSE OUTLINE/SYLLABUS SHEET

•	COURSE NO:	MATH2700L
•	COURSE TITLE:	Calculus I
•	CREDIT HOURS:	4
•	SEMESTER:	Spring 2021
•	INSTRUCTOR NAME:	Katie Seigle
•	E-MAIL ADDRESS:	kseigle@ccsnh.edu
•	OFFICE LOCATION:	Turner 205

- **CONFERENCE HOURS:** Tuesday 6:00-7:00 via Zoom. Additional time available per student request. Link will be posted on Canvas course page.
- **PREREQUISITES:** LMAT2350 or Precalculus equivalent with a grade of C or better

• COURSE DESCRIPTION: This course is designed for the student who has a strong math background. Included is a brief review of topics from Precalculus. Calculus topics include functions, limits, continuity, slope/rate of change and the derivative, rules for and applications of the derivative, derivatives of exponential and logarithmic functions, exponential growth and decay, and an introduction to integrals. Applications are aimed at business and life sciences students.

TEXT/INSTRUCTIONAL MATERIALS AND EQUIPMENT NEEDED:

Text: *Contemporary Calculus* by Dale Hoffman at Bellevue College. Students are required to purchase an access code for Lumen Learning OHM online program for all homework and chapter tests. Access to the textbook is also available through this site. Students can purchase the code through the LRCC bookstore or directly through Lumen. Weekly modules are set up in Canvas; students are expected to complete work as outlined in these modules and to read any notices posted.

Please note use of a scientific calculator (e.g. TI-84) is required in this course.

GRADING:	The following criteria will	determine your grade for the course:
Cate	gory	Percentage of Course Grade
Quiz	zes: (lowest dropped)	30%
Tests	S:	40%
Hom	ework: (lowest dropped)	20%
Read	lings	10%

*If the final exam grade is higher than the cumulative test average, the final exam grade will be used for the test average.

The following grading scale will be used to assign your final grade:

А	93-100	В	83-86	С	73-76	D	63-66
А-	90-92	B–	80-82	C–	70-72	D-	60-62
B+	87-89	C+	77-79	D+	67-69	F	0-59

Quizzes: Quizzes will be given almost weekly. Two tries on each quiz is allowed. Quizzes will be done through Lumen OHM. The lowest quiz grade will be dropped from the overall average.

- **Tests:** Tests will cover all material from the indicated chapters. All tests are cumulative and may contain material from previous tests. Tests will be done through Lumen OHM.
- **Homework:** Weekly homework is assigned through Lumen OHM. Assignments are expected to be completed by Friday of each week. A 5% grade deduction will be given for late work.
- **Readings:** Weekly readings are assigned through Lumen OHM. I highly recommend completing the readings before attempting the homework. Since this is an online course, this is the virtual "in-class" component. A 5% grade deduction will be given for late work.
- **CHEATING:** If I find that you have cheated at any time, you will automatically receive a grade of "F" for this course.
- **NEED FOR ASSISTANCE:** Often additional assistance is needed in a math class. I am available during the office hours posted or you may make an appointment with me for other times that can be mutually agreed upon.

For quick questions, email is the best method of communication. Lumen OHM provides students with the option to directly email the instructor with the specific problem. Students are encouraged to use this tool.

Free peer tutoring is available through the learning lab. This is an excellent service that many students take advantage of regularly. It can often make the difference between success and failure. If you think you are going to have difficulty in this class, sign up immediately, since it can sometimes take a little time to connect you with a tutor.

• ATTENDANCE POLICY: Students are expected to complete work on time and maintain communication with the instructor when questions arise. This is an online course, but weekly check-ins will be beneficial (but are not required) for students. It is recommended that all students attend the first scheduled Zoom office hour for an overview of the course and to ensure everyone has proper access to online materials.

• COURSE OUTCOMES/COMPETENCIES:

Course competencies: At the conclusion of this course, the student will be able to:

- Define the limit of a function
- Evaluate limits, including one-sided limits
- Identify limits that do not exist
- Explain continuity
- Find the slope of the tangent line to a graph
- Interpret the slope of the tangent line
- Find the limit of difference quotients
- Relate the limit of difference quotients to slope
- Define derivative in terms of slope
- Find derivatives using the difference quotient
- Relate differentiability and continuity
- Apply the constant, power, sum and difference rules for differentiation
- Solve problems involving instantaneous rate of change and velocity
- Apply the product and quotient rules for differentiation
- Use the chain rule
- Find higher order derivatives
- Use implicit differentiation
- Solve related rate problems
- Use the concepts of increasing/decreasing intervals, critical numbers, relative/absolute extrema, concavity, points of inflection, and horizontal/vertical asymptotes to graph functions
- Solve optimization problems
- Define *e* using limits
- Differentiate exponential and logarithmic functions
- Evaluate exponential growth and decay
- Find limits involving trig functions
- Differentiate trig functions
- Use indefinite integral notation for antiderivatives
- Use basic integration rules to find antiderivatives
- Evaluate sums using summation notation
- Approximate the area of a region using summation techniques
- Evaluate definite integrals using limits and properties of definite integrals
- Apply the fundamental Theorem of Calculus

- Evaluate indefinite integrals using pattern recognition, change of variables, and the General Power rule
- Use the Trapezoidal Rule

EXPECTATIONS: The following will be expected from all students:

- Behave in an ethical manner (all work is your own, use legitimate resources, do not abuse absences, etc.)
- Complete assignments in a timely manner. When deadlines are given, meet them; do not procrastinate.
- Conduct yourself appropriately for a college learning environment.
- Work effectively as a member of a group.
- Work independently when required.
- Use a variety of sources (text, teacher, videos, computer programs, alternate books, other students when appropriate, etc.) to achieve proficiency in the course competencies. Remember, it is your responsibility to learn the material.

It is my hope that this course meets your every expectation as a challenging, engaging, respectful learning experience. If you find this not to be the case, I would welcome the opportunity to address your concerns. This is not only a courtesy, it is a matter of process and procedure outlined in the <u>LRCC Student Handbook</u>. Should we fail to arrive at a mutually satisfactory understanding, you should refer the matter to my department chair, Prof. Stephen Freeborn, at <u>sfreeborn@ccsnh.edu</u>.

Course Schedule (Spring 2021) Instructor may announce changes to this schedule in Canvas. Students are expected to stay informed of any changes.

	Class Topics	Assignments	
	Review Topics – Functions, Operations on	Homework #1: OHM Student Tutorial and R	leview
Week I	Functions, Exponents, Quadratics,	Homework – 0.3, Review 2, 4, 5, 7, 8, 9, 10	Due 1/22
1/19	Exponential Functions, Logarithms, Trig		
	Section 1.0 Slopes and Velocities	Reading #1. Sections 1.0 1.2	
Week 2	Section $1.0 - $ Slopes and velocities Section $1.1 - $ Limit of a Function	Homework #2: Sections $1.0 - 1.2$	
1/25	Section 1.2 – Limit Properties	Quiz #1 – Review, Slopes, Limits	Due 1/29
	Section 1.3 – Continuous Functions	Reading #2: Sections 1.3 – 1.4	
Week 3	Section 1.4 – Formal Definition of a Limit	Homework #3 : Sections 1.3 – 1.4	
2/1		Quiz #2 – Continuity and Limits	
		Exam #1 – Review and Chapter 1	Due 2/5
Week 4	Section 2.0 – Slope of a Tangent Line	Reading #3: Sections $2.0 - 2.1$	
2/8	Section 2.1 – Definition of a Derivative	Homework #4: Sections $2.0 - 2.1$	$D_{-} = 2/12$
Weels 5	Section 2.2 Differentiation Fermular	Quiz #3 – Tangent Lines and Derivatives	Due 2/12
Week 5	Section 2.2 – Differentiation Formulas	Reading #4: Sections $2.2 - 2.3$	
2/13	Section 2.5 – Differentiation Fatterns	Duiz #4 $-$ Differentiation	Due 2/19
Wook 6	Section 2.4 Chain Rule	Beading #5: Sections 2.4 2.5	Duc 2/17
2/2.2	Section 2.5 – Using the Chain Rule	Homework #6: Sections $2.4 - 2.5$	
2,22	Section 2.5 Comp are chain rate	Ouiz #5 – Chain Rule	Due 2/26
Week 7	Section 2.6 – Related Rates	Reading #6: Sections 2.6, 2.9	
3/1	Section 2.9 – Implicit Differentiation	Homework #7: Sections 2.6, 2.9	
		Quiz #6 – Related Rates and Implicit Diff.	
		Exam #2 – Chapter 2	Due 3/5
Week 8	Section 3.1 – Intro to Max and Min Section 3.2 Mean Value Theorem	Reading #7: Sections $3.1 - 3.2$	
5/0	Section 3.2 – Wear Value Theorem	Homework #8 : Sections 3.1 – 3.2 Quiz #7 – Max and Min, MVT	Due 3/12
3/15	Spring Break – no class.	No new assignments.	
Week 9	Section $3.3 - F'$ and the Shape of F	Reading #8: Sections 3.3 – 3.4	
3/22	Section $3.4 - F'$ and the Shape of F	Homework #9: Sections 3.3 – 3.4	
		Quiz #8 – F' and the Shape of F	<mark>Due 3/26</mark>
Week 10	Section 3.5 – Applied Max and Min	Reading #9: Sections 3.5 – 3.7	
3/29	Section 3.7 – L'Hopital's Rule	Homework #10: Sections $3.5 - 3.7$	
	1	Quiz #9 – Asymptotes, Max and Min Exam #3 Chapter 3	$\mathbf{D}_{\mathbf{H}0} \mathbf{A}/2$
Week 11	Section 4.0 – Intro to Integrals	Reading #10: Sections $4.0 - 4.1$	Duc 4/2
4/5	Section 4.1 – Sigma Notation and Reimann	Homework #11: Sections $4.0 - 4.1$	
	Sums	Quiz #10 – Integrals and Sums	Due 4/9
Week 12	Section 4.2 – Definite Integral	Reading #11: Sections 4.2 – 4.3	
4/12	Section 4.3 – Properties of the Definite	Homework #12 : Sections 4.2 – 4.3	
	integral	Quiz #11 – Definite Integrals and Properties	<mark>Due 4/16</mark>
Week 13	Section 4.4 – Areas, Integrals, and	Reading #12: Sections 4.4 – 4.6	
4/19	Antiderivatives Section 4.5 Eurodemental Theorem of	Homework #13 : Sections 4.4 – 4.6	
	Calculus	Quiz #12 – Area, Antiderivatives, FTC	Due 4/23
	Section 4.6 – Finding Antiderivatives		
Week 14	Section 4.7 – First Applications of Definite	Reading #13: Sections 4.7 – 4.9	
4/26	Integrals	Homework #14 : Sections 4.7 – 4.9	
	Section 4.8 – Using Tables to Find	Quiz #13 – Applications, Tables, and Approxi	imations
L	Anuderivatives	Exam #4 – Chapter 4	Due 4/30

	Section 4.9 – Approximating Definite Integrals **Calc 2?		
Week 15 5/3	No new material. Finish any outstanding assignments.	Final Exam	Due 5/7

Weekly Schedule MATH2700L Calculus I

Week	Description	Assignment/Assessment
August 28-Sept 1, 2017	Graphing Calculator	
Begin Unit 1	Operations; Introduction to	
Limits & Continuity	limits graphically and	
	analytically; Evaluating limits	
	using properties and direct	
	substitution	
	Trigonometric Review;	Quiz 1.2 Understanding and
	Algebraic strategies for	Evaluating Limits
	evaluating limits; Limits that	
	Fail to Exist; One-sided and	
	Infinite limits/Vertical	
	asymptotes	
September 5-8, 2017	LABOR DAY	
	ON LINE	
	Continuity; Determining	
	continuity at a point;	
	Removable/non-Removable	Quiz 1.3 Evaluating Limits
	discontinuities; Properties of	Algebraically; One Sided limits
	Value Theorem	
	FND UNIT 1	
Sontombor 11 15 2017	The definition of the derivative:	Ouiz 1 4 Continuity
September 11–15, 2017	Understanding the tangent line	Quiz 1.4 Continuity
Begin Unit 2	to the curve and Local	
Understanding the	Linearity	
Derivative	Differentiability: Basic	
	differentiation rule for	
	constants, powers, multiples,	
	and sum/differences; Exam	
	Preparation	
September 18–22, 2017	ON LINE	Unit 1 Exam: Limits and
▲ , · ·	Understanding the derivative as	Continuity
	a rate of change; Higher order	
	derivatives including motion	
	problems	
	Product and Quotient rules for	Quiz 2.1-2.2 Definition of the
	Differentiation	derivative; Basic
		differentiability rules
September 25–29, 2017	The chain rule for algebraic	
	functions including trig	
	Operations involving Logs and	Quiz 2.3 Quiz Rate of Change;
	(e) Review; Derivatives of	Product & Quotient Rules

	Logarithmic Functions and	
	Exponential Functions (e)	Onin 2.4 Chain Bula and
October 2–6, 2017	andor implicit differentiation	Quiz 2.4 Chain Rule and Motion Problems
	Applications (1)	Wotion Froblems
	Associated higher order	
	Associated light of def derivative problems: Associated	
	applications (Related Rates_1)	
October 0 13 2017	Related Rates (2)	Quiz 2 5: Implicit
October 9–13, 2017	FND UNIT 2	Differentiation
Begin Unit 3	Understanding Extrema: Exam	Differentiation
Derivative and Curve	Prenaration	
Sketching	i i opui ution	
October 16–20, 2017	ON LINE	Unit 2 Exam: Differentiation
,	First Derivative Test for	
	Relative Extrema	
	Concavity and inflection; Apply	Quiz 3.1-3.3 Extrema and MVT
	Second Derivative Test for	
	Relative Extrema	
October 23–27, 2017	Limits as X approaches	
	infinity; Horizontal asymptotes;	
	Curve Sketching	
	Linear Approximation using	Quiz 3.4 Concavity, Inflection,
	the Tangent line; Differentials	2 nd Derivative Test; Curve
	Ortimization(1)	Sketching
October 30-Nov. 3, 2017	Optimization(1)	Quiz 5.5 Linear Approximation
	Ontimization (2): Exam Bron	& Differentiais
	FND UNIT 3	
November 6 10 2017	ON LINE	Unit 3 Exam Applications of
	Definition of the	the Derivative
	AntiDerivative: Indefinite	
	Integration: Basic Integration	
	Basic Trig Integration; General	
	and Particular solutions	
November 13–17, 2017	Integration Review; Motion	Quiz 4.1 Anti-Differentiation
Regin Unit 4	and its relationship to	_
Integration	integration; Intro Area Under	
Integration	the Curve	
	Left hand, Right Hand, and	
	Midpoint Reimann Sums; The	
	definite integral as an area	
	under the curve	
November 20–24 , 2017	Properties of definite integrals;	Quiz 4.2 General/Particular
Thanksgiving Break	The Fundamental Theorem of	Solutions to Differential
_		Equations
	I nanksgiving	
November 27– Dec 1, 2017	hy Substitution	Quiz 4.5 Definite Integral/Fundamental Theorem
	by Substitution	of Calculus
	Calculator Operations.	
	Average Value of a Function.	
	Applications of Integration	
December 4-8 2017	Area using Trapezoids	Ouiz 4.4 Integration by
		Substitution

	ON LINE Prepare for Final Exam	Unit 4 Exam Integration and Applications
December 11–15, 2017	Prepare for Final Exam	
Final Exam Week		Final Exam

http://college.cengage.com/mathematics/blackboard/content/larson/calc8e/calc8e_solution_main.html?CH=00 &

Week	Description	Assignment/Assessment
August 28-Sept 1, 2017	Graphing Calculator	1.2: #1,3,7 (use the table feature of graphing
Begin Unit 1	Operations; Introduction to	calculator); 11,12, 19, 21, 23
Limits & Continuity	limits graphically and	
	analytically; Evaluating limits	1.3: 1, 7, 11, 15, 17, 23, 37,
	using properties and direct	
	substitution	
	Trigonometric Review;	Quiz 1.2-1.3 Understanding and
	Algebraic strategies for	Evaluating Limits
	evaluating limits; Limits that	1.3: 27, 29, 33, 35, 41, 45, 51, 53, 57, 59, 67,
	Fail to Exist; One-sided and	69, 73, 75
	Infinite limits/ Vertical	1.4: 7-10; 15,17
	asymptotes	1.5: Worksheet Infinite Limits & Asymptotes
September 5-8, 2017	LABOR DAY	1.4: 1-6; 25-32
	ON LINE	
	Continuity; Determining	
	continuity at a point;	
	Removable/non-Removable	Quiz 1.3-1.5 Evaluating Limits
	discontinuities; Properties of	Algebraically; One Sided limits
	continuity & the Intermediate	1.4: 33, 34,37,38,41, 42, 45, 51, 57, 69-72
	Value Theorem	
	END UNIT 1	
September 11–15, 2017	The definition of the derivative;	2.1: 13, 14, 17, 18, (backtrack to) 5, 7, (then)
Begin Unit 2	Understanding the tangent line	25, 27, 57
Understanding the Derivative	to the curve	
	Differentiability; Basic	Quiz 1.4 Continuity
	differentiation rule for	2.1: 81, 83, 85, 86
	constants, powers, multiples,	2.2: 5,7,9,13, 41,43,45,47, (backtrack) 32,
	and sum/differences; Exam	34, (then) 53, 56, 57, 60
<u> </u>	Preparation	
September 18–22, 2017	ON LINE	Unit I Exam: Limits and Continuity
	Understanding the derivative as	2.2: Rate of Change/Higher
	a rate of change; Higher order	Order/Motion worksneet
	derivatives including motion	
	problems Due due t and Questiont unlag for	Oni-2122 Definition of the device time
	Product and Quotient rules for	Quiz 2.1-2.2 Definition of the derivative;
	Differentiation	7 3 • 1 2 3 7 8 0 14 15 10 21 23 63 65 73
September 25_29 2017	The chain rule for algebraic	2.3. 1,2,3,7,8,9,14,15,19,21,23,05,05,75
September 23–27, 2017	functions including trig	2.4. 7, 9, 14, 16, 24, 41-44, 47, 49, 52, 50, 59, 61, 60, 71, 83
	Operations involving Logs and	Ouiz 2 3 Ouiz Rate of Change: Product &
	(e) Review: Derivatives of	Quiz 2.5 Quiz Rate of Change, 11000000 &
	Logarithmic Functions and	5 1. 45 46 48 50 51 53 59 95
	Evaluation Functions (e)	5.1 . 45, 46, 46, 56, 51, 55, 57, 75
October 2–6, 2017	Implicit derivatives: Higher	2 5 :1 2 5 7 11 26 45 46 53 (tanline
0000001 2 0, 2017	order implicit diff. Applications	only) 58
	(1)	Applications (1) Worksheet
	(Related Rates_1)	2 6 • Related Rates(1) Worksheet
October 9–13 2017	Related Rates (2)	Oujz 2.2/2.4/5.1/5.4 Chain Rule and Motion
Regin Unit 3	Exam Pren	Problems
2 cgm cmt c	END UNIT 2	2.6: Related Rates (2) Worksheet

Derivative and Curve	Understanding Extrema-	Quiz 2.5: Implicit Differentiation with
Sketching	Increasing and Decreasing	Related Rates
Shetening	Intervals	3.1: 13, 15, 19, 22, 24, 28, 33, 39, 42
		3.3: 3, 6, 7, 11, 12, 13, 15
October 16–20, 2017	ON LINE	Unit 2 Exam: Differentiation
	First Derivative Test for	3.3: 17-23, 35, 37, 39, 42
	Relative Extrema	
	Concavity and inflection; Apply	3.4: 11-13, 26, 31,32, 36, 39
	Second Derivative Test for	
	Relative Extrema	
October 23–27, 2017	Limits as X approaches infinity;	Quiz 3.1-3.3 Extrema and 1 st Derivative
	Horizontal asymptotes; Curve	Test
	Sketching	3.5: 17, 21-28
	Lincon Annuovimation using the	S.0: /, 8 Ouiz 2.4 Concernity Inflaction 2nd
	Tangant line: Differentials	Quiz 5.4 Concavity, Innection, 2 ^{an} Derivative Test: Curve Skotshing
	rangent nne, Differentials	3 9. Tangent Line Approximation &
		Differentials Worksheet
October 30-Nov. 3, 2017	Ontimization(1)	Ouiz 3.5 Linear Approximation &
	• F (-)	Differentials
		3.7: Optimization (1) Worksheet
	Optimization (2); Exam Prep	3.7: Optimization (2) Worksheet
	END UNIT 3	
November 6-10 , 2017	ON LINE	Unit 3 Exam Applications of the Derivative
Begin Unit 4	Definition of the	4.1: 15-29 ODD; 30-34 ALL
Integration	AntiDerivative; Indefinite	
	Integration; Basic Integration	
	Basic Trig Integration; General	4.1: 35-41 odd; 55, 57, 59, 60
	and Particular solutions	
November 13–17, 2017	Integration Review; Motion and	Quiz 4.1 Anti-Differentiation
	Particular Solutions and	4. Applications of Fatticular Solutions & Motion as Defined by Integration Worksheet
	Applications: Intro Area Under	Wotion as Defined by Integration Worksheet
	the Curve	
	Left hand. Right Hand. and	4.3: Area Under the Curve/Reimann Sums
	Midpoint Reimann Sums; The	and the Definite Integral Worksheet
	definite integral as an area	
	under the curve	
November 20–24 , 2017	Properties of definite integrals;	Quiz 4.2 General/Particular Solutions to
Thanksgiving Break	The Fundamental Theorem of	Differential Equations
	Calculus	4.3: 41, 43
	Thenks	4.4: 5, 6, 8, 9, 10, 11, 13, 15, 21, 39, 41
November 27 Dec 1 2017	I nanksgiving	Quiz 4 2 4 4 Definite Internal/Enderson tal
November 27– Dec 1, 2017	hy Substitution including Tria	Quiz 4.3-4.4 Definite Integral/Fundamental
	LN and (a)	$45.7 - 23$ ODD: 37 $43.46 \cdot 48$ 49 51 83
		5.2: 1. 3. 5. 6. 7. 8
		5.4: 85-89 ALL . 91
	Calculator Operations: Average	4.4: Average Value of a Function &
	Value of a Function;	Integration Applications Worksheet
November 27– Dec 1, 2017	Applications of Integration	
(Continued)		
December 4–8, 2017	Area using Trapezoids	Quiz 4.4 Integration by Substitution
		4.6: Trapezoid Integration Worksheet

	ON LINE Prepare for Final Exam	Unit 4 Exam Integration and Applications
December 11–15, 2017	Prepare for Final Exam	
Final Exam Week		Final Exam